the form $\mathbf{A}=r \mathbf{I}-\mathbf{B}$, where $\mathbf{B} \geq \mathbf{0}$ and $r>\rho(\mathbf{B})$, then (7.10.14) guarantees that \mathbf{A}^{-1} exists and $\mathbf{A}^{-1} \geq \mathbf{0}$, and it's clear that $a_{i j} \leq 0$ for each $i \neq j$, so A must be an M-matrix.

Proof of (7.10.26). If \mathbf{A} is an M-matrix, then, by (7.10.25), $\mathbf{A}=r \mathbf{I}-\mathbf{B}$, where $r>\rho(\mathbf{B})$. This means that if $\lambda_{\mathbf{A}} \in \sigma(\mathbf{A})$, then $\lambda_{\mathbf{A}}=r-\lambda_{\mathbf{B}}$ for some $\lambda_{\mathbf{B}} \in \sigma(\mathbf{B})$. If $\lambda_{\mathbf{B}}=\alpha+\mathrm{i} \beta$, then $r>\rho(\mathbf{B}) \geq\left|\lambda_{\mathbf{B}}\right|=\sqrt{\alpha^{2}+\beta^{2}} \geq|\alpha| \geq \alpha$ implies that $\operatorname{Re}\left(\lambda_{\mathbf{A}}\right)=r-\alpha \geq 0$. Now suppose that \mathbf{A} is any matrix such that $a_{i j} \leq 0$ for all $i \neq j$ and $\operatorname{Re}\left(\lambda_{\mathbf{A}}\right)>0$ for all $\lambda_{\mathbf{A}} \in \sigma(\mathbf{A})$. This means that there is a real number γ such that the circle centered at γ and having radius equal to γ contains $\sigma(\mathbf{A})$-see Figure 7.10.1. Let r be any real number such that $r>\max \left\{2 \gamma, \max _{i}\left|a_{i i}\right|\right\}$, and set $\mathbf{B}=r \mathbf{I}-\mathbf{A}$. It's apparent that $\mathbf{B} \geq \mathbf{0}$, and, as can be seen from Figure 7.10.1, the distance $\left|r-\lambda_{\mathbf{A}}\right|$ between r and every point in $\sigma(\mathbf{A})$ is less than r.

Figure 7.10.1
All eigenvalues of \mathbf{B} look like $\lambda_{\mathbf{B}}=r-\lambda_{\mathbf{A}}$, and $\left|\lambda_{\mathbf{B}}\right|=\left|r-\lambda_{\mathbf{A}}\right|<r$, so $\rho(\mathbf{B})<r$. Since $\mathbf{A}=r \mathbf{I}-\mathbf{B}$ is nonsingular (because $0 \notin \sigma(\mathbf{A})$) with $\mathbf{B} \geq \mathbf{0}$ and $r>\rho(\mathbf{B})$, it follows from (7.10.14) in Example 7.10.3 (p. 620) that $\mathbf{A}^{-1} \geq \mathbf{0}$, and thus \mathbf{A} is an M-matrix.

Proof of (7.10.27). If $\widetilde{\mathbf{A}}_{k \times k}$ is the principal submatrix lying on the intersection of rows and columns i_{1}, \ldots, i_{k} in an M-matrix $\mathbf{A}=r \mathbf{I}-\mathbf{B}$, where $\mathbf{B} \geq \mathbf{0}$ and $r>\rho(\mathbf{B})$, then $\widetilde{\mathbf{A}}=r \mathbf{I}-\widetilde{\mathbf{B}}$, where $\widetilde{\mathbf{B}} \geq \mathbf{0}$ is the corresponding principal submatrix of \mathbf{B}. Let \mathbf{P} be a permutation matrix such that

$$
\mathbf{P}^{T} \mathbf{B P}=\left(\begin{array}{cc}
\widetilde{\mathbf{B}} & \mathbf{X} \\
\mathbf{Y} & \mathbf{Z}
\end{array}\right) \text {, or } \mathbf{B}=\mathbf{P}\left(\begin{array}{cc}
\widetilde{\mathbf{B}} & \mathbf{X} \\
\mathbf{Y} & \mathbf{Z}
\end{array}\right) \mathbf{P}^{T} \text {, and let } \mathbf{C}=\mathbf{P}\left(\begin{array}{cc}
\widetilde{\mathbf{B}} & \mathbf{0} \\
\mathbf{0} & \mathbf{0}
\end{array}\right) \mathbf{P}^{T} .
$$

Clearly, $\mathbf{0} \leq \mathbf{C} \leq \mathbf{B}$, so, by (7.10.13) on p. 619, $\rho(\widetilde{\mathbf{B}})=\rho(\mathbf{C}) \leq \rho(\mathbf{B})<r$. Consequently, (7.10.25) insures that $\widetilde{\mathbf{A}}$ is an M-matrix.

Proof of (7.10.28). If \mathbf{A} is an M-matrix, then $\operatorname{det}(\mathbf{A})>0$ because the eigenvalues of a real matrix appear in complex conjugate pairs, so (7.10.26) and (7.1.8),

